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Abstract 

Mathematics is not merely a formal language, but 

an objective and critical tool for the analysis, 

interpretation and prediction of a variety of 

phenomena, both natural and man-made. 

This contribution aims to define the value of 

applied mathematics in the field of scientific 

analysis, focusing on three fundamental 

mathematical methodologies: the derivative, the 

integral and the Fourier transform. 

Each of these methodologies allows complex 

phenomena to be analysed through the analysis of 

particular trends and the decomposition into a 

summation of simpler functions, facilitating their 

interpretation and their complex, multidimensional 

and difficult to deal with as a whole. 

Specifically, the derivative constitutes the 

cornerstone of infinitesimal analysis, the integral, 

on the other hand, defines the accumulation and 

summation of infinitesimal quantities, making it 

possible to derive overall information from the 

original data. Finally, the Fourier transform 

ùùconstitutes an indispensable tool for the  
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frequency analysis of complex and variable 

systems. 

For each of these tools, a theoretical discussion has 

been provided accompanied by their use in 

practical activities, in order to document how their 

use can simplify and clarify the interpretation of 

complex hermetic phenomena. 

Introduction 

Mathematical analysis constitutes one of the 

foundations of science, as it offers a rigorous and 

multifaceted framework to quantitatively and 

qualitatively represent a wide range of complex 

phenomena. Moreover, its application in the 

translation of empirical investigations into 

predictive models makes it an irreplaceable tool 

for the development of scientific knowledge. 

 Indeed, thanks to advanced analytical techniques 

such as the derivative, integral and Fourier 

transform, it is possible to model the dynamics of 

complex systems, identify existing causal 

relationships and predict the evolution of 
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phenomena with levels of precision and reliability 

that depend on the datasets used. 

These tools make it possible to analyse and define 

the multidimensional and often non-linear nature 

of phenomena, favouring a systematic treatment. 

The derivative, for example, represents a 

fundamental element for analysing the local 

behaviour of a given function as the variables of 

the observed phenomenon vary instantaneously, 

showing how these variations reciprocally 

condition the overall behaviour of the 

phenomenon. 

In Physics, this tool finds application in the study 

of the variation of velocity and acceleration, while 

in Geology and Chemistry it allows one to examine 

phenomena governed by temporal or spatial 

dependencies, such as seismic waves or the 

diffusion of substances in a certain solution. 

At the same time, the integral plays a substantial 

role in the analysis of cumulative quantities, thanks 

to the sum of infinite infinitesimal contributions 

that make it possible to obtain the representative 

function of the phenomenon studied. 

In the field of Statistics, the application of the 

integral function allows the estimation of 

cumulative probability distributions, while in 

Climatology it allows the analysis of cumulative 

trends over extended time intervals, facilitating the 

understanding of long-lasting or large-scale 

phenomena. 

Finally, the Fourier transform is one of the most 

powerful and multifaceted tools for analysing 

complex and often chaotic functions. By breaking 

down the complex function into its fundamental 

frequencies, it allows one to identify periodic 

patterns and isolate significant components 

otherwise hidden within a global representation. 

This approach is particularly useful in the 

processing and analysis of seismic and 

climatological waves, where the extraction of 

critical information enables the evaluation of the 

determining components of the function 

representing a given phenomenon, otherwise 

chaotic to the eye.  

Finally, if one combines the use of the derivative, 

the integral and the Fourier transform, it is possible 

to compose models that go beyond the 

representation of a given phenomenon, providing 

clear and comprehensive information represented 

by the function of the complex phenomenon being 

studied, making it possible to identify its 

fundamental components and understand its 

evolution in highly complex and multidimensional 

contexts. 

 

The Derivative of a Function 

The derivative of a function represents one of the 

fundamental approaches to analysing and 

understanding the behaviour of one variable in 

relation to another, making it possible to quantify 

the instantaneous variation of dynamic and 

complex phenomena with respect to a given 

independent variable. 

Mathematically, the derivative of the function f(x) 

at a point ‘x’ is defined as the limit of the 

incremental ratio tending to zero of the growth of 

the independent variable: 

 

𝒇(𝒙) = 𝐥𝐢𝐦
𝚫𝒙→𝟎

(
𝒇(𝒙 + 𝚫𝒙) − 𝒇(𝒙)

𝚫𝒙
)  

 

The derivative defines the rapidity with which the 

function f(x) varies at the point considered with 

respect to the variable ‘x’, making it possible to 

observe both the local and global behaviour of a 

given phenomenon and to understand its evolution. 

In fact, this tool makes it possible to identify 

critical characteristics of the function, such as its 

maxima, minima and points of inflection. 

In essence, the derivative enables the study of 

complex phenomena by describing their temporal 

or spatial evolution, as well as developing 

predictive models capable of representing their 

behaviour in a rigorous manner. This predictive 

capability is particularly relevant in fields such as 

physics, geology and climatology, where the 

phenomena analysed have a strongly dynamic 
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nature. From a purely analytical point of view, the 

derivative of a function at a certain point represents 

the slope of the tangent line to the curve of the 

continuous function at that point. This value 

reflects the instantaneous variation trend of the 

function. In other words, if we define a point ‘x’ on 

a given curve, the derivative f(x) will indicate the 

‘speed’ with which f(x)varies as ‘x’ changes.  

Consequently, the derivative does not merely 

provide a measure of the variation trend, but 

represents an articulated method for analysing 

dynamic and complex systems.  

Finally, through a quantitative approach, it allows 

us to define the instantaneous changes present in 

the function of a certain phenomenon, being able 

to understand their content within a broader 

context, making it possible to define mathematical 

models capable of describing complex phenomena 

with high precision and reliability. 

 

Integral of a Function 

The integral of a function represents the inverse 

operation of the derivative and plays a 

fundamental role in mathematical analysis, 

especially in the representation of cumulative 

quantities and accumulation processes. 

Specifically, the definite integral of a function 

f(x)dx in the interval [a, b] is expressed as: 

∫ 𝒇(𝒙)𝒅𝒙
𝒃

𝒂

 

defining, in effect, the area enclosed between the 

curve of the function f(x) and the ‘x’ axis, limited 

in the interval [a, b], i.e. the total magnitude 

associated with a certain variable that varies 

continuously within a given interval.  

The integral represents the infinite sum of 

infinitesimal quantities, each of which contributes 

to the calculation of the total magnitude. 

This interpretation is fundamental to 

understanding concepts related to the 

accumulation and continuous variation of a certain 

variable within a defined interval, as it allows us to 

determine cumulative quantities by integrating a 

continuous distribution of values. 

This methodology is used in Physics to calculate 

quantities such as work, obtained by integrating 

force along a displacement, or total energy, derived 

by integrating an energy density over a volume, or 

in Statistics, to define cumulative probability or to 

analyse frequency distributions. 

Essentially, the integral represents an 

indispensable tool in the mathematical analysis of 

complex phenomena, being able to unite local and 

global aspects of dynamic and complex 

phenomena through a cumulative representation, 

allowing a holistic view of the natural phenomena 

that characterise our universe. 

 

 

3. Fourier Transform of a Function 

The Fourier transform is an extremely powerful 

mathematical technique that can decompose a 

representative function of a given parameter, 

whether periodic or non-periodic, into a 

combination of sine waves. 

This approach allows a complex function to be 

represented as the sum (or integral) of its 

fundamental sine-wave components, each 

characterised by a certain frequency. 

For a function f(x)dx, the Fourier transform is 

formally defined as: 

𝐅(𝐟)(𝛚) ∫ 𝒇(𝒙) 𝐞−𝐢𝛚𝐱𝐝𝐱
+∞

−∞

 

 

where ‘ω’ represents the angular frequency and ‘e-

iωx’ describes the complex oscillations associated 

with each frequency. 

The Fourier transform, therefore, determines the 

contribution of each frequency to the original 

function by transforming it from the time (or 

spatial) domain to the frequency domain. 

This transformation is essential to be able to 

distinguish and analyse the distribution of the 
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frequencies present in the original function, 

making it easier to understand the phenomena that 

generated them, highlighting dominant 

frequencies, periodic components and their 

intensity (amplitude). Furthermore, it makes it 

possible to visualise how this information is 

distributed within the initial function, providing, in 

fact, a clear representation of the ‘harmonic’ 

structure and ‘oscillations’ present in the complex 

system analysed. 

In the case of ‘periodic functions’, the Fourier 

transform identifies the main frequencies and their 

intensity, representing the initial signal as a 

discrete sum of sinusoidal oscillations.  

For ‘non-periodic functions’, on the other hand, it 

provides a continuous representation of 

frequencies, covering the entire spectrum and 

offering a complete description of the variations 

present in the signal. 

The fact of being able to distinguish and identify 

‘periodic components’ in apparently chaotic 

signals, showing repetitive patterns, and ‘non-

periodic signals’ defined with continuous 

representations, defines its relevant usefulness and 

effectiveness, which have, in fact, made it a 

mainstay in applied sciences for the study of 

frequency distribution in wave phenomena, for the 

analysis of seismic waves, allowing the 

frequencies of primary and secondary waves to be 

isolated, which have enabled the reconstruction, in 

macroseismic studies, of the Earth's internal 

structure. 

The Fourier transform, therefore, is not limited to 

being just a mathematical tool, but represents an 

objective and precise method for analysing and 

understanding complex phenomena, making it 

possible to highlight indispensable information 

about the phenomenon being studied, starting from 

apparently disordered and chaotic data. 

 

Conclusions 

Mathematical analysis, using fundamental tools 

such as the derivative, integral and Fourier 

transform, is indispensable for interpreting and 

modelling complex and seemingly chaotic 

phenomena in science.  

The synergistic combination of derivative, integral 

and Fourier transform offers an extraordinarily 

powerful mathematical framework for dealing 

with and modelling complex phenomena. The 

derivative makes it possible to analyse the 

instantaneous behaviour of a function, providing a 

detailed view of local changes; the integral makes 

it possible to accumulate these changes, outlining 

a global and cumulative perspective of the 

analysed phenomenon; finally, the Fourier 

transform translates these changes from the 

temporal or spatial domain to the frequency 

domain, allowing hidden patterns and structures to 

be identified. 

This interaction between mathematical tools is 

crucial in interdisciplinary applications, such as 

the study of seismic waves, where the derivative 

analyses instantaneous changes in seismic wave 

propagations, the integral calculates the total 

energy transferred and the Fourier transform 

decomposes complex signals to isolate dominant 

frequencies. 

Similar approaches also find application in 

Engineering, Climatology and Biology, 

demonstrating how the application of these 

methodologies, whether used singly or in 

combination, provide a solid basis with which to 

analyse a complex phenomenon in a scientific, 

authentic and objective manner, making it possible 

to solve complex scientific problems, offering 

accurate predictive models and a deeper 

understanding of the systems analysed.  

The above makes it possible to state that 

mathematics is not merely a formal language, but 

represents an essential, precise and objective 

methodology for exploring complex phenomena, 

succeeding in predicting and optimising the 

models that define the multiple fields of study. 

The rigorous application of such tools not only 

allows us to gain a deeper and truer understanding 

of reality, but also to contribute significantly to 

improving sustainability and solving global 

challenges. 
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Mathematics, capable of integrating theoretical 

rigour and practical applications, allows complex 

problems to be analysed with an analytical and 

oriented approach, capable of preserving human 

well-being and environmental balance. 

Ultimately, mathematical techniques are not just a 

simple technical means, but represent a lens 

through which to observe and analytically interpret 

complex and at first sight chaotic phenomena, 

defining a scientific, rigorous and real 

understanding of them. 
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