Concetta Scimone, Luigi Donato, Simona Alibrandi, Elvira Velardi, Rosalia D’Angelo, Antonina Sidoti
Abstract
Ischemic events and intracerebral haemorrhages are the main consequences related to cerebrovascular diseases. The can arise due to thromboembolism phenomena and vessels rupture, respectively, and affect up to 60% of general population. Here we review both acquired and congenital cerebrovascular diseases, focusing on their different pathogenesis. Particularly, roles of risk factors exposure and genetic components are evaluated.
References
1) Yi X, Lin J, Luo H, Wang C, Liu Y. Genetic variants of PTGS2, TXA2R and TXAS1 are associated with carotid plaque vulnerability, platelet activation and TXA2 levels in ischemic stroke patients. PLoS One 2017;12:e0180704.
2) Kumar A, Misra S, Kumar P, Sagar R, Gulati A, Prasad K. Relationship of phosphodiesterase 4D (PDE4D) gene polymorphisms with risk of ischemic stroke: a hospital based case-control study. Neurol Res 2017;39:689-94.
3) Sigurdsson S, Aspelund T, Kjartansson O, Gudmundsson EF, Jonsdottir MK, Eiriksdottir G, Jonsson PV, van Buchem MA, Gudnason V, Launer LJ. Incidence of Brain Infarcts, Cognitive Change, and Risk of Dementia in the General Population: The AGES-Reykjavik Study (Age Gene/Environment Susceptibility-Reykjavik Study). Stroke;48:2353-60.
4) Carril JC, Cacabelos R. Genetic Risk Factors in Cerebrovascular Disorders and Cognitive Deterioration. Curr Genomics 2017;18:416-29.
5) Kenjereš S, de Loor A. Modelling and simulation of low-density lipoprotein transport through multi-layered wall of an anatomically realistic carotid artery bifurcation. J R Soc Interface 2013;11:20130941.
6) Sporns PB, Hanning U, Schwindt W, Velasco A, Buerke B, Cnyrim C, Minnerup J, Heindel W, Jeibmann A, Niederstadt T. Ischemic Stroke: Histological Thrombus Composition and Pre-Interventional CT Attenuation Are Associated with Intervention Time and Rate of Secondary Embolism. Cerebrovasc Dis 2017;44:344-50.
7) Frenkel MB, Renfrow JJ, Singh J, Garg N, Wolfe SQ. Combined interventional and surgical treatment of tandem middle cerebral artery embolus and internal carotid artery occlusion: case report. J Neurosurg 2017;17:1-5.
8) Lee AY, Sanyal A, Xiao Y, Shadfan R, Han HC. Mechanical instability of normal and aneurysmal arteries. J Biomech 2014;47:3868-75.
9) Huang ZQ, Zhou XW, Hou ZJ, Huang SQ, Meng ZH, Wang XL, Yu H, Feng LJ, Wang QJ, Li PA, Wen ZB. Risk factors analysis of mirror aneurysms: A multi-center retrospective study based on clinical and demographic profile of patients. Eur J Radiol 2017;96:80-4.
10) Krishna H, Wani AA, Behari S, Banerji D, Chhabra DK, Jain VK. Intracranial aneurysms in patients 18 years of age or under, are they different from aneurysms in adult population? Acta Neurochir (Wien) 2005;147:469-76.
11) Alvarez H, Castillo M. Genetic markers and their influence on cerebrovascular malformations. Neuroimaging Clin N Am 2015;25:69-82.
12) Haasdijk RA, Cheng C, Maat-Kievit AJ, Duckers HJ. Cerebral cavernous malformations: from molecular pathogenesis to genetic counselling and clinical management. Eur J Hum Genet 2012;20:134-40.
13) Denier C, Labauge P, Bergametti F, Marchelli F, Riant F, Arnoult M, Maciazek J, Vicaut E, Brunereau L, Tournier-Lasserve E; Société Française de Neurochirurgie. Genotype-phenotype correlations in cerebral cavernous malformations patients. Ann Neurol 2006;60:550-56.
14) Sirvente J, Enjolras O, Wassef M, Tournier-Lasserve E, Labauge P. Frequency and phenotypes of cutaneous vascular malformations in a consecutive series of 417 patients with familial cerebral cavernous malformations. J Eur Acad Dermatol Venereol 2009;23:1066-72.
15) Shenkar R, Shi C, Rebeiz T, Stockton RA, McDonald DA, Mikati AG, Zhang L, Austin C, Akers AL, Gallione CJ, Rorrer A, Gunel M, Min W, De Souza JM, Lee C, Marchuk DA, Awad IA. Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations. Genet Med 2015;17:188-96.
16) de Souza JM, Domingues RC, Cruz LC Jr, Domingues FS, Iasbeck T, Gasparetto EL. Susceptibility-weighted imaging for the evaluation of patients with familial cerebral cavernous malformations: a comparison with t2-weighted fast spin-echo and gradient-echo sequences. AJNR Am J Neuroradiol 2008;29:154-58.
17) Gross BA, Du R. Natural history of cerebral arteriovenous malformations: a meta-analysis. J Neurosurg 2013;118:437-43.
18) Thomas JM, Surendran S, Abraham M, Rajavelu A, Kartha CC. Genetic and epigenetic mechanisms in the development of arteriovenous malformations in the brain. Clin Epigenetics 2016;8:78.
19) Brinjikji W, Iyer VN, Wood CP, Lanzino G. Prevalence and characteristics of brain arteriovenous malformations in hereditary hemorrhagic telangiectasia: a systematic review and meta-analysis. J Neurosurg 2017;127:302-10.
20) McDonald J, Wooderchak-Donahue W, Webb CVS ,Whitehead K, Stevenson DA, Bayrak-Toydemir P. Hereditary hemorrhagic telangiectasia: genetics and molecular diagnostics in a new era. Front Genet 2015;6:1.
21) Petersen TA, Morrison LA, Schrader RM, Hart BL. Familial versus Sporadic Cavernous Malformations: Differences in Developmental Venous Anomaly Association and Lesion Phenotype. Am J Neuroradiol 2010;31:377-82.
22) Eerola I, Boon LM, Mulliken JB, Burrows PE, Dompmartin A, Watanabe S, Vanwijck R, Vikkula M. Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am J Hum Genet 2003;73:1240-49.